Study of the effective number of parameters in nonlinear identification benchmarks

Anna Marconato, Maarten Schoukens, Yves Rolain and Johan Schoukens

ELEC — Vrije Universiteit Brussel, Belgium
Wiener-Hammerstein benchmark

![Graph showing the Wiener-Hammerstein benchmark with RMSE vs. number of parameters for different models. The models include BLA, poly3-WH, poly10-WH, poly12-WH, poly17-WH, NN-NLSS, FS-LSSVM, LSSVM, SA-PNLSS, PWL8-WH, PWL30-WH, PWL24-WH, and PNLSS.]
n_{eff} vs. n_θ

n_θ Number of parameters
- SVMs?
- Regularization?

n_{eff} Effective number of parameters
- Property of the identified model
- Degrees of freedom in the model parametrization
Outline

- n_{eff} vs. n_{θ}
 - Motivation example: FIR case
 - Linear / Nonlinear in the parameters
 - Comparison on WH benchmark
Motivation: FIR example

\[\hat{y} = \sum_{k=0}^{d} \hat{g}_k u(t - k) \]
Motivation: FIR example

\[
\hat{y} = \sum_{k=0}^{d} \hat{g}_k u(t - k)
\]

System response

Least squares solution

\[
\hat{g} = (K^T K)^{-1} K^T y
\]
Motivation: FIR example

\[\hat{y} = \sum_{k=0}^{d} \hat{g}_k u(t - k) \]
Motivation: FIR example

\[\hat{y} = \sum_{k=0}^{d} \hat{g}_k u(t - k) \]

\[\hat{g} = (K^T K)^{-1} K^T y = V \Sigma^{-1} U^T y = V \theta \]

SVD

\[K = U \Sigma V^T \]
Motivation: FIR example

\[\hat{g} = V\theta \]

\[\hat{g} = \tilde{V}\tilde{\theta} \]

- \(n_\theta \times 1 \)
- \(n_\theta \times 1 \)
- \(n_\theta \times 1 \)
- \(n_{\text{eff}} \times 1 \)

System response

Truncated solution

Least squares solution

Magnitude

\[k \]
LINEAR REGRESSION

$$\hat{y} = K\theta$$
$$\hat{\theta} = (K^TK)^{-1}K^Ty = V\Sigma^{-1}U^Ty$$

SVD
$$K = U\Sigma V^T$$

Regressor matrix and n_{eff}

Rank K ↓ n_{eff} ↓
Jacobian matrix and n_{eff}

\[
\Delta \theta = (J^T J)^{-1} J^T e = V \Sigma^{-1} U^T e
\]

\[
\hat{\theta}_{i+1} = \hat{\theta}_i + \Delta \theta
\]

\[J = U \Sigma V^T\]

$\text{Rank } J \downarrow \rightarrow n_{\text{eff}} \downarrow$
WH results: comparison

\[n_{\theta} = 134 \]

\[\text{RMSE} = 5.6 \text{ mV} \]
WH results: singular values of J

![Graph showing singular values and a threshold](image)
WH results: n_{eff}

REGULARIZATION (ridge regression)

\[n_{\text{eff}} = \sum_{i=1}^{n_{\theta}} \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \]

\[\sigma^2 \]

\[\lambda = 1 \]

\[n_{\text{eff}} = 33 \]

Magnitude [dB]

Singular value number
WH results: comparison

![Graph showing RMSE vs. Effective number of parameters for various models including BLA, poly3-WH, poly10-WH, poly12-WH, poly17-WH, regularized NN-NLSS, PWL8-WH, PWL30-WH, PWL24-WH, and NN-NLSS. The numbers represent RMSE values for each model.]
Conclusion

- Effective number of parameters
 - Measure of model complexity for a given dataset
- More correct comparison of nonlinear models
 - WH benchmark
- Rank reduced estimation based on truncated SVD
 - NL in the parameters: still open problem
Thank you for your attention!

Any questions?
Study of the effective number of parameters in nonlinear identification benchmarks

Anna Marconato, Maarten Schoukens, Yves Rolain and Johan Schoukens

ELEC – Vrije Universiteit Brussel, Belgium
Silverbox results: comparison

\[n_\theta = 23 \]

\[\text{RMSE} = 0.34 \text{ mV} \]
Silverbox results: comparison

![Graph showing RMSE vs Effective number of parameters with different marker labels like BLA, NLFB, regularized NN-NLSS, poly-LFR, and NN-NLSS.](Image)