Structural modeling of Wiener-Hammerstein system in the presence of the process noise

Erliang Zhang*, Maarten Schoukens**, Johan Schoukens**

*School of Mechanical Engineering, Zhengzhou University, China
**ELEC, Vrije Universiteit Brussel, Belgium

April 2016
Content

- Problem statement
- Assumptions
- Response of the Wiener-Hammerstein system
- Process noise detection
- Examples
- Conclusion
Problem statement

- Process noise modeling influences the estimation consistency of Wiener-Hammerstein model
- Detect whether the process noise passes through the static nonlinear part

Fig. 1 Wiener-Hammerstein system
Assumptions

- Wiener-Hammerstein model
  1. The systems $R(q)$ and $S(q)$ are linear, stable and time-invariant.
  2. The static nonlinearity $f(t)$ belongs to the set of generalized nonlinearities, can be approximated arbitrary well by polynomials in the sense that the mean square error tends to zero as the polynomial degree tends to 1.

- Measurement and process noise
  The output measurement noise $e_y(t)$ and the process noise $e_x(t)$ are zero-mean stationary noise, and independent of the input excitation.

- System input
  The input signal $u(t)$ is a persistent excitation, whose value is bounded.
Assumptions

Static nonlinearity:

\[ f(x) = \sum_{i=0}^{\infty} a_i x^i \]

(Weierstrass approximation theorem)

Approximately,

\[ f(x) = \sum_{i=0}^{n_f} a_i x^i \]
System response

- The process noise does pass through the nonlinearity part (see Fig. 1)

\[ y_m(t) = \sum_{i=0}^{\infty} a_i S(q) x^i(t) + \sum_{i=1}^{\infty} \sum_{j=0}^{i-1} a_i c_{ij} S(q) \left\{ x^j(t) e_x^{i-j}(t) \right\} + e_y(t) \]

where \( x(t) = R(q)u(t) \),

\[ c_{ij} = \frac{i!}{(i - j)!j!} \] (binomial coefficient)

Remark: the error caused by the process noise is “modulated” by the input signal!
System response

- The process noise **does not pass** through the nonlinearity part

\[ y_m(t) = \sum_{i=0}^{\infty} a_i S(q) x^i(t) + S(q) e_x(t) + e_y(t) \]

where \( x(t) = R(q)u(t) \).

**Remark:** the error caused by the process noise is independent of the input signal!
Process noise detection

Principle

• Use the stationarity of the output measurement noise
• Use nonstationary input signal to differentiate the output error caused by the process noise from the measurement noise when it passes through the nonlinearity part
• Use the periodic signal to separate the nonperiodic part (caused by the process noise and measurement noise) from the nonlinearity of Wiener-Hammerstein system

Design a periodic signal which is nonstationary within one period
Process noise detection

Input design

\[ u(t) = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2-1} |U(k)| \exp\left(j2\pi \frac{k f_s}{N} t + \phi_k \right) \]

Random phase multisine

with \[ \mathbb{E}(\exp(j\phi_k)) = 0 \]

Iterative optimization with \( \phi_k \) as design variables

1. At the \( i+1 \) iteration step
   \[ u_{i+1}(t) = \frac{RMS_0(t)}{RMS_i(t)} u_i(t) \]
   \( RMS_0 \): expected enveloppe
   \( RMS_i \): iterated enveloppe at the \( i \)-step

2. Compute the DFT
   \[ U_{i+1}(k) = A_{i+1}(k) \exp(j\phi_k) \]

3. Impose constraint
   \[ \tilde{U}_{i+1}(k) = \begin{cases} A \exp(j\phi_k) & k \in \mathcal{I} \\ 0 & k \notin \mathcal{I} \end{cases} \]
Process noise detection

The output error $e_p(t)$ caused by the process noise

$$e_p(t) = \sum_{i=1}^{n_f} \sum_{j=0}^{i-1} a_i c_{ij} S(q) \left\{ x^j(t) e_x^{i-j}(t) \right\} \quad \text{(Preceding the SNL part)}$$

$$e_p(t) = S(q) e_x(t) \quad \text{(Succeeding the SNL part)}$$

Bounded property

$e_p(t)$ is aleatory, and has finite mean-value and variance at each time instant
Process noise detection

Robust measurement strategy using multiple experiments

\[ \hat{y}^{[m]}(t) = \frac{1}{P} \sum_{p=1}^{P} y^{[p,m]} \]

\[ \hat{\sigma}_{e[m]}^2(t) = \frac{1}{P - 1} \sum_{p=1}^{P} \left( y^{[p,m]}(t) - \hat{y}^{[m]}(t) \right)^2 \]

\[ \hat{\sigma}_e^2(t) = \frac{1}{M} \sum_{m=1}^{M} \hat{\sigma}_{e[m]}^2(t) \]

\[ M \text{ experiments, } P \text{ periods} \]
Simulated example

Wiener-Hammerstein system

Linear systems

\[
R(z) = \frac{0.1 + 0.2z^{-1} - 0.3z^{-2}}{0.95 - 1.4z^{-1} + 0.9z^{-2}}
\]

\[
S(z) = \frac{z^{-1} + 0.5z^{-2}}{0.95 - 0.9z^{-1} + 0.9z^{-2}}
\]

Static nonlinearity (SNL)

\[
f(x(t)) = \alpha x(t) + \beta x^2(t) + \gamma x^3(t)
\]

where \(\alpha = 0.01\), \(\beta = 0.05\), \(\gamma = -0.008\)
Simulated example

Input signal (one period)

Sample number $N = 8192$, 2132 excited frequency lines

Periods of signals: $P = 32$, experiments: $M = 32$
Simulated example

Wiener-Hammerstein system: heavy output measurement noise

Preceding the SNL part
Simulated example

Wiener-Hammerstein system: heavy process noise

Succeeding the NL part

\[ \hat{\sigma}_e(t) \]

Time (s)
Wiener-Hammerstein benchmark

Wiener-Hammerstein benchmark with process noise

Periods of signals: $P = 30$
Experiments: $M = 32$
Wiener-Hammerstein benchmark

Averaged system response over periods for 32 experiments
Wiener-Hammerstein benchmark

Standard deviations of output error, including measurement noise + error caused by the process noise, for 32 experiments

\[ \hat{\sigma}_{e[n]}(t) \]
Wiener-Hammerstein benchmark

Standard deviation of output error over all experiments

\[ \tilde{\sigma}_e(t) = \frac{1}{M-1} \sum_{m=1}^{M} \tilde{\sigma}_{e[m]}(t) \]
Wiener-Hammerstein benchmark

Physical interpretation of decreasing-increasing behavior of the estimated output error

Circuit generated the static nonlinearity
Conclusion

• A simple framework has been proposed for the structural modeling of Wiener-Hammerstein systems with process noise.
• The proposed methodology can provide insight on the static nonlinearity which the process noise precedes.
• It can be straightforwardly applied to other block-oriented models.